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Tethered networks in two dimensions: A low-temperature view
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Perturbation theory and Monte Carlo simulation are applied to the study of low-temperature properties of a
triangular phantom network of harmonic springs with nonzero resting length. We determine the equation of
state and elastic moduli in the solid~ordered! phase, as well as the location of the solid-liquid phase boundary.
A simple explanation is given for negative thermal expansivity. Agreement between two-loop perturbative
results and simulation is fairly good, the largest discrepancies being in the location of the phase boundary. An
expansion in inverse area, useful for the ordered phase, is also given.@S1063-651X~98!01104-0#

PACS number~s!: 62.20.Dc, 64.60.Cn, 87.22.Bt, 05.20.2y
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I. INTRODUCTION

Elastic lattices play a central role in a wide variety
problems in condensed matter. Among topics of current
terest, we cite as illustration flux line arrays in type-II sup
conductors@1#, charge-density waves@2#, and tribology@3#.
There are also a host of biological applications, such as
use of atethered networkas a model of the red blood ce
cytoskeleton@4,5#, which is a nearly perfect triangular ne
work of spectrin filaments that fortifies the membrane a
low but nonzero effective temperature@6#. The present work
is largely motivated by issues in the latter domain. Pheno
enological descriptions in terms of an effective elas
Hamiltonian are often used@7# in these sorts of problems
The elastic moduli are unknown input and their variati
with temperature is usually neglected.

To summarize this work, we bridge the gap to a mac
scopic level by calculating elastic moduli for a particul
model of the mesoscopic ball-and-spring variety. This p
vides an analytical point of reference complementary
Monte Carlo simulation, and we will see that straightforwa
two-loop perturbation theory gives good agreement on m
quantitative details. We have extended previously publis
Monte Carlo simulations@8,9# in order to make that compari
son.

Some variations on the theme are also considered. A
summed propagator can be used, but the results are not
terially affected~see the end of Sec. IV!. A ‘‘quasivirial’’
expansion is presented in Sec. VII, which does nicely for
well-ordered networks.

The approach taken here is an inherently low-tempera
technique since it is based on perturbation theory aroun
perfectly ordered network. A tractable high-temperatu
complement is to be desired, of course. The permanent
nectivity of the network seems, however, to frustrate the
plication of any traditional methods.

*Present address: Department of Physics, The Pennsylvania
University, University Park PA 16802.
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Unfortunately, we have not been able to incorporate s
avoidance~in the sense of Ref.@8#; see below! into the
framework in a clean manner. Nevertheless, some less
can be drawn concerning self-avoiding networks. In parti
lar, it is now clear that self-avoidance begins to stabilize
network at temperatures significantly lower than naively e
pected~see Sec. VI!. Bond-angle dependence could be add
to the energy function, but it is unclear whether that is ve
satistfactory as the constraint one wants to model is ra
singular. Finally, we remark that, at a mean-field level,
simple tension acts much like a self-avoidance constrain

II. THE MODEL AND ITS PHASES

To be specific, the system studied is a triangular netwo
the Hamiltonian function of which is a sum of harmon
spring terms over nearest-neighbor pairs^ i j &:

V5
K

2 (̂
i j &

~ ur i j u2s0!2. ~1!

For most situations in which this model would be approp
ate, V actually incorporates some entropy arising from m
croscopic degrees of freedom that do not appear explicitl
the description. Steric interactions between the tethers c
necting nearest neighbors can be modeled by aself-
avoidanceconstraint, which allows only configurations th
can be produced by deformation of the reference configu
tion without passing any nearest-neighbor bond through
other. The designation ‘‘phantom’’ refers to a network lac
ing such a constraint.

At low or negative pressure the ground state of the te
ered net is an expanded regular~positionally ordered! trian-
gular conformation possessingC6 rotational symmetry. Fluc-
tuations in the relative position of verticesi and j are
measured bŷ uui2uj u2& and of the relative orientations o
nearest-neighbor bondsi j and kl by ^(ui2uj )•(uk2ul)&,
where ui is the deviation of vertexi from its zero-
temperature position. The former correlation function
verges asT lnur i2r j u, according to the arguments of th

ate
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57 4369TETHERED NETWORKS IN TWO DIMENSIONS: A LOW- . . .
Mermin-Wagner-Coleman theorem@10#. This signals the de-
struction of long-range positional order by long-waveleng
fluctuations to which bond-orientational order is immun
One therefore expects a bond-orientationally order
C6-symmetric phase at low temperature and pressure.

Under sufficiently high pressure, the ground state of
self-avoidingnetwork is a crushed one-dimensional stru
ture. One side of each triangle is twice as long as the o
two, so the symmetry group is reduced toC2 . Fluctuations
are clearly suppressed in a way that invalidates the Merm
Wagner argument. It is reasonable to suppose that there
C2-symmetric ordered phase at positive temperature.
phantom network, on the other hand, has noC2-symmetric,
ordered phase forT.0.

Notice that, since the transition between t
C6-symmetric phase and either aC2 phase or a disordere
phase implies spontaneous symmetry breaking, itcannotend
in a critical point. Either both phases persist for allT or there
is a third high-temperature phase~almost certainly fully dis-
ordered!. It is not clear whether self-avoidance can mainta
the order to arbitrarily high temperature.

In Monte Carlo simulation@8#, phantom tethered net
works were seen to suffer a first-ordercollapse transition
from theC6 phase to a disordered phase at a quite low te
perature. Self-avoiding networks, by contrast, were later
served@8,9# to exhibit the above-noted first-orderC6 to C2
transition, which persisted to the highest temperatu
probed. The presence or absence of a third phase of the
avoiding network was not definitively established. Oth
simulation efforts@11#, report a critical point. In the commo
region ofC6 symmetry, the self-avoiding net behaves mu
like the phantom network. As will be shown, however, th
region is rather small at low tension. This indicates that ste
constraints are important at much lower temperatures t
one might have supposed.

III. DEFORMATION, TENSION, AND ELASTIC MODULI

In the following, we make use of variables that have be
made dimensionless by usings0 and Ks0

2/2 as length and
energy units. The dimensionless temperature and pres
are

t[
kBT

Ks0
2/2

,

p[)
P

K
5P

A0 /N

Ks0
2/2

,

whereA0 is the area of the network atT5P50 andN is the
number of vertices. Other quantities that have been rend
dimensionless in this way, such as free energies and el
moduli, are indicated by an overbar.

At zero temperature and pressure, the network form
perfect triangular lattice of spacing one~s0 in physical units!.
Under a global affine deformation described by a matrixM ,
the node originally atX0 moves toX5MX0 . A convenient
parametrization of the deformation matrixM @12# is ~see
Appendix A for details!
.
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M5S s1f1

f2

f2

s2f1
D . ~2!

The symmetries of the hexagonal network allow a Four
expansion ofF̄(M ) in u[arg(f) (f5f11 if2):

F̄~s,f!5F̄~s,0!1 (
n>0

f n~ ufu2!cos~3nu!. ~3!

In the spirit of the Landau approach, one just takes the fi
few terms of the power-series expansions of the coeffic
functionsf n(x). At T50, one gets simply the Taylor expan
sion of V:

1

N
V̄~M !53~s21!21

3

2 S 22
1

sD ufu22
3

8s2 ~f31f̄3!

2
3

32s3 ufu41¯ . ~4!

It is necessary to use the Gibbs free energyG(p)
5 infA@F(M )1PA# when the pressure is nonzero. The d
mensionless area per vertex isa5A/A05s22ufu2, so that
PA/N5pa. For a phantom network ‘‘area’’ is not an unam
biguous concept; we must specify what it means. The are
an elementary triangle is a signed quantity. If the product
of a conformation from theT5P50 reference configuration
involves changing the orientation of a triangle, i.e., a ver
passes through the opposite side, then that area is nega
Essentially, the two choices forA are either the total signed
area or its absolute value.

We adopt here the point of view thatA means the abso
lute value of the total~signed! area. Thisunsigned total area
is different from the sum of unsigned areas of individu
triangles, of course. If we conceive of periodic bounda
conditions as involving configurations on an actual tor
then its real size is given by the unsigned total area. Since
work with a lattice ofk points, periodic boundary condition
are implicit here.

Coupling pressure to the total signed area instead of
absolute value has significant consequences. The netw
will not maintain a positive area underanypositive pressure;
it tends to turn inside out. The part of the ordered phase
Fig. 1 at p.0 vanishes, reappearing at negativeA. The
phase diagram is symmetric about the lineA50. Finally, we
comment that the possibility of neatly folded conformation
which do not affect the value of the elastic energy, mig
also eliminate this part of the~C6-symmetric! ordered phase

Bulk and shear moduliB and m are obtained from the
curvatures of the Gibbs free energy at its minimum,

dF1PdA')N@B~ds!21mufu2#. ~5!

The Poisson ratio, defined ass5(B2m)/(B1m), measures
the strain response of the system along some direction
small externally applied strain in a perpendicular direction
it is negative, under compression along one axis, the netw
contracts along the orthogonal direction. Boal, Seifert, a
Shillcock @8# measured the Poisson ratio in simulations o
variety of tethered nets and found that it is generally nega
at intermediate tensions, a finding that seemed to cause s
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4370 57PAUL E. LAMMERT AND DENNIS E. DISCHER
surprise when reported. A negative Poisson ratio is very
usual in real materials. The phantom tethered net has a n
tive Poisson ratio in almost the entire ordered phase~see Fig.
1!.

IV. PERTURBATIVE SETUP

At zero temperature, nearest-neighbor separation vec
take the affinely distorted valuesei j [Mei j

0 . Thermal fluctua-
tions are described by the ‘‘phonon’’ variables

u~k!5
1

N1/2 (
i

e2 ik•r iui ,

whereui is the deviation of vertexi from its zero-temerature
position. Thus~repeated indices are summed over!

dV̄5(
k

1

2
@G0~k!21#mnu~k!mu~2k!n1 (

n>3

1

n!
N12n/2

3(
$ki %

Fn~k1 ,...,kn!m,...,nu~k1!m
¯u~kn!n. ~6!

The real-space propagatorG0 is given by

@G0
21#mn~e!52dmn22ueu21~dmn2êmên!, ~7!

where ê is a unit vector along a nearest-neighbor bonde.
Expressions for the verticesFn needed for our calculations
3<n<6, are given in Appendix B for the benefit of th
interested reader.

The free energy is now written as F̄(M )
52t ln*@du#e2V/kBT and we calculate perturbatively indV̄.
Propagators and vertices in the Feynman diagrams carry
tors of t and t21, respectively. Thus the relationL5I 2V
11 between the numbersL of loops,I of internal lines, and
V of vertices shows that the number of loops is one gre
than the number of powers oft. The loop expansion is there
fore a low-temperature expansion. We have carried the
culation only to two loops. One could go further, but n
much, since the computational time required for calculat
of a given correlation function grows at least as rapidly
NL. There are 16 topologically distinct diagrams for the tw
loop calculation. They are calculated at each lattice cons
of interest, producing three quadratic polynomials inT. The
calculations reported here were done on a 20320 grid cov-
ering the first Brillouin zone ink space. The results are no
materially affected by using a grid as small as 12312.

It should be noted that the calculations discussed here
free of infrared difficulties. Ask→0, the bare propagato
behaves as 1/k2. However, vertices scale asFn;kn. Since
there are no genuine low-momentum external legs in
diagrams, these factors compensate precisely. In other wo
we do not calculate correlation functions ofu at large dis-
tances. As a consequence of this fact, it does not matter
we pretend the network possesses long-range translat
order even though it is actually onlyquasi-long-range.

Some effects of higher orders in the perturbative exp
sion can be fairly easily tested by using a self-consist
resummed propagator in the diagrams, as we have d
Generally, the free energy does not lend itself well to resu
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mation schemes@13#. The pressure and elastic moduli, how
ever, are given by derivatives ofF(M ) with respect to the
elements ofM , e.g.,

2p5
1

2s

]F̄

]s
5

1

2s K ]V̄

]sL ,

with ]/]s5]/]M1
11]/]M2

2. Since these are essentially co
relation functions, some resummations become feasi
though there is no compelling physical reason for such gy
nastics.

The self-consistent propagator is calculated iterative
the (n11)st approximation toG21 being determined from
the nth via the recursion relation

Gn11
21 5G0

212Sn , ~8!

whereSn is the one-loop self-energy withGn on the internal
lines. There are then two graphs forS. In fact, using thisG
changes the results little, except very close to the ph
boundary, which shifts a bit as a result. Since the results
longer take the form of polynomials inT when using the
partially resummed propagator, one also has the signific
drawback of needing to perform the calculations separa
at each temperature of interest.

V. MONTE CARLO DETAILS

Simulations of periodic networks inD52 at nonzero tem-
perature and pressure or tension have been described e
sively elsewhere@8,9#. In a single Monte Carlo step, each o
N vertex particles is displaced randomly and a fluctuation
both the box dimensions and shape are attempted. Move
accepted under a suitable Boltzmann weight and adjustm
are made in order to maintain an acceptance rate near 4
Figures 1–4 show Monte Carlo data points for the aver
area and elastic moduli, the latter from fluctuation formul
for N5122 networks. Networks of size 42, 62, and 242 were
also examined under a tension2p50.1 and altogether dis
play a N21/2 scaling for the temperature of transition fro
the expanded phantom network to a collapsed state. Ba
on this scaling, the location of the phase boundary is deem
accurate to within 15%. Further, the last several data po
in a plotted series generally represent stable averages
order 107 Monte Carlo steps, an ensemble typically grea
by a factor of 10 than the~unplotted! next point in the series

VI. THERMAL EXPANSIVITY AND INSTABILITY

Another unusual feature of the phantom network is t
the thermal expansivity is negative throughout the orde
phase. The self-avoiding network also exhibits this pheno
enon at very low temperature@9#. Its departure from this
behavior indicates that fluctuations are probing the ste
constraints. As we now show, a negative thermal expansi
is easily understood and generally to be expected for in
actions with no hard core.

In k space, the bare propagator~7! is

@G0~k!21#mn52(
e

ae$d
mn2ueu21Pe

mn%, ~9!
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57 4371TETHERED NETWORKS IN TWO DIMENSIONS: A LOW- . . .
where Pe is a projector onto the line orthogonal toe and
ae54 sin2(k•e/2)>0. Remember thatk is scaled with the
lattice parameters, so it is dimensionless and the entire co
lection of k vectors is independent ofs. Eigenvectors of
G0(k) are completely determined by the sum of projectors
Eq. ~9!, which is a positive operator and independent ofs.
Hence the eigenvectors are also independent ofs and the
associated eigenvalues are decreasing withs. ~We might say
that the mode-specific Gru¨neisen parameters are all negativ
though this usually refers to genuinely fixedk.! Thus the
harmonic fluctuation contribution toF is always decrease
by contracting the lattice. This argument applies to any
tice structure in any dimension, requiring only a neare
neighbor harmonic potential.

A more intuitive understanding can be obtained from si
ply thinking about the shape of the potential~1!. The poten-
tial for longitudinal bond fluctuations is harmonic, so a slig
increase ins is no better or worse than a slight decrease.
contrast, the curvature of the potential that is relevant
transverse fluctuations is less fors,1 than fors.1 because
in the former case fluctuations bring the bond length b
toward the minimum of the potential, but further away in t
latter. With minor modifications, this argument seems to
through for other power-law potentials@e.g., (s21)4#, which
is nice, since even constructing a perturbation theory
such a case is rather delicate. The partition function of
isolated fluctuating triangle, as opposed to an entire netw
can be calculated exactly@9#. That analysis demonstrates th

FIG. 1. Phase diagram in theA-T plane. Isobars are indicated b
dashed lines at2p50, 0.1, 0.2, 0.5, 0.8, and 1.0. Monte Car
results along these isobars~except forp520.8! are plotted as data
points. The points with arrows indicate the highest temperatur
which the network was ordered. For the perturbative calculat
the phase boundary is defined by divergence of the compressib
The shaded region indicates a positive Poisson ratio from the
loop calculation. It does not actually touch the phase boundary
cept atT50. The inset pictures are to give some impression of
conformations for expanded and collapsed nets. Their precise p
ment in the diagram has no significance.
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same feature of a negative thermal expansion modulus.
In contrast to the total area, which is precisely ()/2)Ns2

by definition, bond lengths fluctuate. As a result, althou
the mean bond length decreases with rising temperatur
does so more slowly than the area.

A simple energy-entropy argument also gives an indi
tion of the collapse transition. The key is the observation t
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FIG. 2. Dimensionless bulk and shear moduli att50.30.
Curved lines~B̄ solid andm̄ dashed! are from the two-loop calcu-
lation and the data points are Monte Carlo results~triangles form̄
and squares forB̄!. The straight lines are zero-temperature valu
for comparison. The shapes are similar for other temperatures.

FIG. 3. Dimensionless bulk modulusB̄ along isobars at2p
50.2 ~open squares!, 0.5 ~closed diamonds!, and 1.0~circles!, off-
set by thet50 values. Data points are from Monte Carlo resu
and the lines are two-loop results.
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4372 57PAUL E. LAMMERT AND DENNIS E. DISCHER
the collapsed phase seems to develop as chains of colla
triangles in an otherwise ordered network@8#. Such a chain
can be visualized as a random walk on the dual lattice.
walk crosses one bond entering a triangle and another
ing. These two are collapsed to a length of approximat
s/2, while the third maintains its length ofs. Then, for each
step of the walk there is an elastic energy gaindE'(s/2
21)22(s21)25s23s2/4 from shrinking a bond and
pressure-area work of about2ps2/2 from the collapse of a
triangle. Finally, each step of the walk entails a choice
tween two sides of a triangle, so there is an entropy of l
per step. These ingredients yield a condensation tempera
for these linear ‘‘defects,’’ identified with the transition an
given by

t* '@s2~p/213/4!s2#/ ln 2.

For fairly high tension,p→23, this says that, along th
transition line, temperature essentially scales with area.
ing the zero-temperature relations215dp/3[11p/3, we ar-

rive at the crude estimateT* '3@ 3
2 2p#/@(31p)22 ln2#.

This agrees with simulation results for the phase boundar
better than an order of magnitude for 0,2p,2.2.

VII. 1/ S EXPANSION

The perturbative calculations we have discussed requ
separate calculation for each area. It is also possible to
struct a double expansion inT and 1/s, sort of quasivirial
expansion. Since this requires just a handful of number
gives ‘‘more for less,’’ when applicable. Expansion in 1/s is
naturally suggested by the structure of the potentialV. For
n>3, the vertexFn scales ass2(n21). The first term on the
right-hand side of Eq.~7! is taken as a new bare propagato

FIG. 4. Dimensionless shear modulusm̄ along isobars at2p
50.2 ~closed diamonds!, 0.5, and 1.0, offset by zero-temperatu
values. Data points are Monte Carlo results and the lines are
loop results.
sed
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which is then independent ofs. The second term becomes a
additional vertexF2 and the scaling holds for this one a
well. In this new scheme, any diagram for the free ene
has a degree ins ~denotedS, naturally!, given by 2S
52(L21)1V5L211 1

2 (nVn , whereVn is the number of
vertices of ordern. Thus only a finite number of vertice
enter at any given order ins21. Furthermore, we obtain the
inequalities2S/2,L21,2S.

Writing the zero-temperature parts explicitly, we expre
the pressure and elastic moduli as

p52313s212 (
n,m>1

pn,ms2mtn,

B̄5)s211 (
n,m>1

bn,ms2mtn,

m̄5)~22 3
2 s21!1 (

n,m>1
mn,ms2mtn. ~10!

Values of the coefficients form<8 are given in Table I~bulk
modulus coefficients are not tabulated since they are gi
by bn,m52mpn,m!. By settingB50, the first two terms of
that series suggest a transition temperatureT* ;s2, as did
the energy-entropy argument of Sec. VI. Curiously, the n
merical coefficients are in close agreement: 2.31 and 2
Unfortunately, although the two-loop phase boundary
quite straight, the slope is much smaller, and even sma
for simulations.

Deep in the ordered phase, the agreement between
expansion and the full two-loop calculation is very clos
Deterioration of the agreement near the phase boundary l
to a non-negligible difference in its location.

VIII. DISCUSSION

Deep in the network’s ordered phase, the agreement
tween Monte Carlo and two-loop perturbative results p
sented here is satisfying. The poor agreement on the loca
of the phase boundary, however, is somewhat disappoint
Since the perturbative calculations are essentially an exp
sion in T, this divergence at high temperature is not terrib
surprising. On the other hand, the considerable discrepa
at very low temperature~i.e., low tension! is puzzling.
Vaguely speaking, it may be that the perturbation the
misidentifies some sort of metastable state as the equilibr
phase. Despite this, emphasis is placed by both theory
simulation on the importance of steric interactions in stab

o-

TABLE I. Coefficients of the expansion ofp andm̄ in powers of
T and 1/s, according to Eq.~10!.

n p1,n (1023) m1,n (1023) p2,n (1023) m2,n (1023)

3 250 72.17 0 0
4 146.57 14.93 0 0
5 94.85 10.31 31.25 29.02
6 64.70 8.49 40.60 232.85
7 45.32 5.76 37.99 255.40
8 32.20 3.16 31.70 262.94
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zation of a low-temperature Hookean spring model of
cytoskeleton.

The self-avoidance interaction we have discussed can
expressed as a limit of a term in the Hamiltonian that s
presses negative area. For example, the sumlSu(2A) of
step functions on the elementary areas, asl→`, will work.
In some ways, the network responds similarly to imposit
of a tension and to a self-avoidance interaction, for exam
in stabilization of the ordered phase. Perhaps the reason
bit easier to see with our remark. An observation in a sim
vein @14# is that the self-avoidance for a planar network c
be recovered as the infinite bending-rigidity limit of a ne
work free to fluctuate in more than two dimensions.
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APPENDIX A: LATTICE SYMMETRY CONSIDERATIONS

Rotations in two dimensions are most easily discussed
using the complex coordinatesz[x1 iy and z̄[x2 iy . We
have

S Mx
x M y

x

Mx
y M y

yD 5ReS Mz
z1M z̄

z i ~Mz
z2M z̄

z!

2 i ~Mz
z1M z̄

z! Mz
z2Mz

z D ~A1!

for the relation between the deformation matrix in thex,y
andz,z̄ bases.

As a function of the deformationM , the free energy ex-
hibits both left and right rotational invariance
F„R(u l)MR(u r)…5F(M ) for u l arbitrary, andu rP(p/3) Z.
Rotation simply changes the phases ofz and z̄, so, for ex-
ample,M z̄

z°ei (u l2ur )M
z̄

z . Fix oneU(1) invariance by re-

quiring thatMz
z be real~equivalent toM y

x5Mx
y!. There re-

mains a symmetry underu l52u r5n(p/3), which is theC6

symmetry of the lattice.M z̄
zÞ0 will indicate that thisC6

symmetry is broken. The notation used in the body of
paper is related bys52Mz

z and f[f11 if25M z̄
z . In the

z,z̄ basis,

M5S s
f*

f
s D . ~A2!

The triangular lattice also has two inequivalent sets of refl
tion symmetries, which take the formz°e22iwz̄, wherew is
r-
e

be
-

n
e,
s a
r

p-
e
-

e
s
l

y

e

-

the angle between the reflection axis and thex axis. With
coordinates oriented so that thex axis is itself a reflection
axis, the free energy is invariant under complex conjugat
of M in Eq. ~A2!, i.e., underf2°2f2 .

We may now attempt a Landau expansion ofF(M ) about
f50, at fixeds. Writing f5ufueiu, monomials allowed by
C6 symmetry are of the formufu2m, ufu2(m1n)cos(3nu), and
ufu2(m1n)sin(3nu). Reflection invariance eliminates thos
odd in u, i.e., the sine terms.

APPENDIX B: INTERACTION VERTICES

The k-space vertices are obtained by Fourier transform
tion of their real-space counterparts

Fn~k1 ,...,kn!m,¯,n5dS ( ki D( 8Fn
m,¯,n~e!

3) @eiki•e021#,

where the sum runs over nearest-neighbor vectorse0 of the
undeformed(M51) reference lattice. For 3<n<6, the real-
space interaction vertices are

F3
mnl~e!5

6

ueu2 @d (mnêl)2êmênêl#,

F4
mnlr~e!5

6

ueu3 @d (mndlr)26d (mnêlêr)15ê(mênêlêr)#,

F5
mnlrs~e!5

1

4ueu4 @3d (mndlrês)110d (mnêlêrês)

27ê(mênêlêrês)#,

and

F6
mnlrst~e!5

1

8ueu5 @2d (mndlrdst)115d (mndlrêsêt)

235d (mnêlêrêsêt)121ê(mênêlêrêsêt)#.

Parentheses around superscripts indicates symmetriz
~average over permutations! andê is the unit vector alonge.
Only F3 andF4 are needed to compute the free energy its
to two loops. The appearance ofF5 andF6 is understood on
the basis of the relation

Fn11~e!m1 ,...,mn115
]Fn~e!m1 ,...,mn

]emn11
.
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