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Tethered networks in two dimensions: A low-temperature view
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Perturbation theory and Monte Carlo simulation are applied to the study of low-temperature properties of a
triangular phantom network of harmonic springs with nonzero resting length. We determine the equation of
state and elastic moduli in the solidrdered phase, as well as the location of the solid-liquid phase boundary.

A simple explanation is given for negative thermal expansivity. Agreement between two-loop perturbative
results and simulation is fairly good, the largest discrepancies being in the location of the phase boundary. An
expansion in inverse area, useful for the ordered phase, is also fBHI63-651X98)01104-0

PACS numbe(s): 62.20.Dc, 64.60.Cn, 87.22.Bt, 05.20/

[. INTRODUCTION Unfortunately, we have not been able to incorporate self-
avoidance(in the sense of Ref[8]; see below into the
Elastic lattices play a central role in a wide variety of framework in a clean manner. Nevertheless, some lessons
problems in condensed matter. Among topics of current incan be drawn concerning self-avoiding networks. In particu-
terest, we cite as illustration flux line arrays in type-Il super-lar, it is now clear that self-avoidance begins to stabilize the
conductorg 1], charge-density wave®], and tribology[3].  Network at temperatures significantly lower than naively ex-
There are also a host of biological applications, such as thBectedsee Sec. VI Bond-angle dependence could be added
use of atethered networlas a model of the red blood cell to the energy function, but it is unclear whether that is very
cytoskeleton[4,5], which is a nearly perfect triangular net- satistfactory as the constraint one wants to model is rather
work of spectrin filaments that fortifies the membrane at aSingular. Finally, we remark that, at a mean-field level, a
low but nonzero effective temperatuji@]. The present work ~Simple tension acts much like a self-avoidance constraint.
is largely motivated by issues in the latter domain. Phenom-
enological descriptions in terms of an effective elastic Il. THE MODEL AND ITS PHASES
Hamiltonian are often usef’] in these sorts of problems. » o )
The elastic moduli are unknown input and their variation 10 be specific, the system studied is a triangular network,
with temperature is usually neglected. the_ Hamiltonian function of WhICh is a sum of harmonic
To summarize this work, we bridge the gap to a macro-SPring terms over nearest-neighbor p4iis:
scopic level by calculating elastic moduli for a particular
model of the mesoscopic ball-and-spring variety. This pro- _ E a2
i - - V=22 (Il =s0)%. D)
vides an analytical point of reference complementary to 2 G
Monte Carlo simulation, and we will see that straightforward
two-loop perturbation theory gives good agreement on manyor most situations in which this model would be appropri-
guantitative details. We have extended previously publishedte,V actually incorporates some entropy arising from mi-
Monte Carlo simulationgs,9] in order to make that compari- croscopic degrees of freedom that do not appear explicitly in
son. the description. Steric interactions between the tethers con-
Some variations on the theme are also considered. A rerecting nearest neighbors can be modeled bysedf-
summed propagator can be used, but the results are not mavoidanceconstraint, which allows only configurations that

terially affected(see the end of Sec. WA “quasivirial” can be produced by deformation of the reference configura-
expansion is presented in Sec. VII, which does nicely for thdion without passing any nearest-neighbor bond through an-
well-ordered networks. other. The designation “phantom” refers to a network lack-

The approach taken here is an inherently low-temperaturéng such a constraint.

technique since it is based on perturbation theory around a At low or negative pressure the ground state of the teth-

perfectly ordered network. A tractable high-temperatureered net is an expanded regulaositionally orderefltrian-

complement is to be desired, of course. The permanent comular conformation possessil rotational symmetry. Fluc-

nectivity of the network seems, however, to frustrate the aptuations in the relative position of verticdsand j are

plication of any traditional methods. measured b)(lui—uj|2) and of the relative orientations of
nearest-neighbor bondg and kI by ((uj—u;)-(ug—uy)),
where u; is the deviation of vertexi from its zero-

*Present address: Department of Physics, The Pennsylvania Stdemperature position. The former correlation function di-
University, University Park PA 16802. verges asT In|r;—r;|, according to the arguments of the
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Mermin-Wagner-Coleman theoregh0]. This signals the de- (s+ b1 & -
. 2

struction of long-range positional order by long-wavelength M= by  S—dby

fluctuations to which bond-orientational order is immune.

One therefore expects a bond-orientationally orderedThe symmetries of the hexagonal network allow a Fourier

Cs-symmetric phase at low temperature and pressure. expansion o (M) in 6=arg(@) (=1 +id,):
Under sufficiently high pressure, the ground state of the

self-avoidingnetwork is a crushed one-dimensional struc- — —

ture. One side of each triangle is twice as long as the other F(s,¢)=F(s,00+ ZO fn([¢]?)cog3n0). )

two, so the symmetry group is reduced@g. Fluctuations "~

are clearly suppressed in a way that invalidates the Merming, the spirit of the Landau approach, one just takes the first

Wagner argument. It is reasonable to suppose that there isfg terms of the power-series expansions of the coefficient
C,-symmetric ordered phase at positive temperature. Thﬁmctionsfn(x). At T=0, one gets simply the Taylor expan-
phantom network, on the other hand, hasGwsymmetric,  gion of v:

ordered phase fofF>0.

Notice that, since the transition between the 1 — 3 1 3 _
Ce-symmetric phase and either@ phase or a disordered iy V(M)=3(s— 1)%+ > (2— g) ||~ 82 (¢%+ )
phase implies spontaneous symmetry breakincgrinotend

in a critical point. Either both phases persist foralbr there 3 .

is a third high-temperature pha&dmost certainly fully dis- ~ 3238 lp*+---. 4
ordered. It is not clear whether self-avoidance can maintain

the order to arbitrarily high temperature. It is necessary to use the Gibbs free ene@yp)

In Monte Carlo simulation[8], phantom tethered net- —inf,[F(M)+PA] when the pressure is nonzero. The di-
works were seen to suffer a first-ordeollapsetransition  mensjonless area per vertexas: A/Ay=s2—|¢|2, so that

from theCq phase to a disordered phase at a quite low temp 5/ = pa. For a phantom network “area” is not an unam-

perature. Self-avoiding networks, by contrast, were later Obbiguous concept; we must specify what it means. The area of

served[8,9] to exhibit the above-noted first-ord&%; to C; 5 glementary triangle is a signed quantity. If the production
transition, which persisted to the highest temperaturégs 5 conformation from thd=P=0 reference configuration

probed. The presence or absence of a third phase of the sejfi o\ es changing the orientation of a triangle, i.e., a vertex
avoiding network was not definitively established. Otherpasses through the opposite side, then that area is negative.

sim_ulation effort 11], report a critica_l point. In the common Essentially, the two choices fak are either the total signed
region of Cg symmetry, the self-avoiding net behaves mucharea or its absolute value.

like the phantom network. As will be shown, however, that o adopt here the point of view thAt means the abso-

region is rather small at low tension. This indicates that steric:rute value of the totalsigned area. Thisunsigned total area
constraints are important at much lower temperatures thajg gitferent from the sum of unsigned areas of individual

one might have supposed. triangles, of course. If we conceive of periodic boundary
conditions as involving configurations on an actual torus,

IIl. DEFORMATION, TENSION, AND ELASTIC MODULI then its real size is given by the unsigned total area. Since we

_ _ work with a lattice ofk points, periodic boundary conditions
In the following, we make use of variables that have beeryre implicit here.

made dimensionless by usirgg and Ks3/2 as length and Coupling pressure to the total signed area instead of its
energy units. The dimensionless temperature and pressug®solute value has significant consequences. The network
are will not maintain a positive area undany positive pressure;
it tends to turn inside out. The part of the ordered phase in
keT Fig. 1 at p>0 vanishes, reappearing at negatie The
T= Fﬁ/Z’ phase diagram is symmetric about the like 0. Finally, we

comment that the possibility of neatly folded conformations,
which do not affect the value of the elastic energy, might
P Ay/N also eliminate this part of theCg-symmetrig ordered phase.
p=v3 R:P Ks2/2' Bulk and shear modulB and x are obtained from the
0 curvatures of the Gibbs free energy at its minimum,

whereA, is the area of the network at=P=0 andN is the SF+PSA~V3N[B(5s)%+ u|o|?]. (5)
number of vertices. Other quantities that have been rendered
dimensionless in this way, such as free energies and elastikhe Poisson ratio, defined as=(B— u)/(B+ 1), measures
moduli, are indicated by an overbar. the strain response of the system along some direction to a
At zero temperature and pressure, the network forms amall externally applied strain in a perpendicular direction. If
perfect triangular lattice of spacing of®, in physical units. it is negative, under compression along one axis, the network
Under a global affine deformation described by a matfix  contracts along the orthogonal direction. Boal, Seifert, and
the node originally aX, moves toX=MX,. A convenient Shillcock[8] measured the Poisson ratio in simulations of a
parametrization of the deformation matrM [12] is (see variety of tethered nets and found that it is generally negative
Appendix A for detail$ at intermediate tensions, a finding that seemed to cause some
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surprise when reported. A negative Poisson ratio is very unmation schemeglL3]. The pressure and elastic moduli, how-
usual in real materials. The phantom tethered net has a negever, are given by derivatives &(M) with respect to the
tive Poisson ratio in almost the entire ordered phase Fig. elements oM, e.g.,
1).

LR 1]V
IV. PERTURBATIVE SETUP “PT 25 9s T 25\ 98/

i kAttrz]eroﬁt.en}p%r_aiurf, dneirest-iihgrg)bo_lthseparla;tllont Vecw(ﬁith alas=dl aMiJr al aM%. Since these are essentially cor-
axe the allinely distorte vaueﬁ— ,,qi'. ermat fluctua- — q|ation functions, some resummations become feasible,
tions are described by the “phonon” variables

though there is no compelling physical reason for such gym-

nastics.
1 . . . . .
u(k)zmz e iy, The self-consistent propagator is calculated iteratively,

the (n+ 1)st approximation ta5 ! being determined from

. . . . the nth via the recursion relation
whereu; is the deviation of vertek from its zero-temerature

position. Thus(repeated indices are summed gver G L=Gyt-3,, (8)

5\7:2 l [Go(K) " 11#u(k) u(— k)" + > i NL-n72 v_vhereEn is the one-loop self-energy witB,, on the inte_rnal
kK 2 A=3 n! lines. There are then two graphs fbr In fact, using thisG
changes the results little, except very close to the phase
XD DKy, ko) e u(ky) A u(k,) s (6)  boundary, which shifts a bit as a result. Since the results no
kit longer take the form of polynomials i when using the
partially resummed propagator, one also has the significant
The real-space propagatGy is given by drawback of needing to perform the calculations separately
A at each temperature of interest.
[Go 1 (e)=25""—2|¢f ~(6*"— & &), (7
where e is a unit vector along a nearest-neighbor band V- MONTE CARLO DETAILS
Expressions for the verticab, needed for our calculations, Simulations of periodic networks i =2 at nonzero tem-
3=<n<6, are given in Appendix B for the benefit of the perature and pressure or tension have been described exten-
interested reader. _ sively elsewher¢8,9]. In a single Monte Carlo step, each of
The free energy is now written asF(M) N vertex particles is displaced randomly and a fluctuation in
= — 7 Inf[dule” e and we calculate perturbatively V. both the box dimensions and shape are attempted. Moves are
Propagators and vertices in the Feynman diagrams carry faéccepted under a suitable Boltzmann weight and adjustments
tors of 7 and 71, respectively. Thus the relatidn=1—V  are made in order to maintain an acceptance rate near 40%.
+1 between the numbets of loops,| of internal lines, and Figures 1-4 show Monte Carlo data points for the average
V of vertices shows that the number of loops is one greate@rea and elastic moduli, the latter from fluctuation formulas,
than the number of powers of The loop expansion is there- for N=12° networks. Networks of size* 6°, and 24 were
fore a low-temperature expansion. We have carried the caRIso examined under a tensienp=0.1 and altogether dis-
culation only to two loops. One could go further, but not play aN~*Z scaling for the temperature of transition from
much, since the computational time required for calculatiorihe expanded phantom network to a collapsed state. Based
of a given correlation function grows at least as rapidly ason this scaling, the location of the phase boundary is deemed
NL. There are 16 topologically distinct diagrams for the two-accurate to within 15%. Further, the last several data points
loop calculation. They are calculated at each lattice constari @ plotted series generally represent stable averages after
of interest, producing three quadratic polynomialginThe  order 13 Monte Carlo steps, an ensemble typically greater
calculations reported here were done on &20 grid cov- by a factor of 10 than thaunplotted next point in the series.
ering the first Brillouin zone irk space. The results are not
materially affected by using a grid as small as<112. VI. THERMAL EXPANSIVITY AND INSTABILITY
It should be noted that the calculations discussed here are )
free of infrared difficulties. Ask—0, the bare propagator _ Another unusual feature of the phantom network is that
behaves as &?. However, vertices scale ab,~k". Since the thermal expansivity is negative through_out the ordered
there are no genuine low-momentum external legs in ouPhase. The self-avoiding network also exhibits this pheljom-
diagrams, these factors compensate precisely. In other word&On at very low temperaturd]. Its departure from this
we do not calculate correlation functions ofat large dis- Pehavior indicates that fluctuations are probing the steric
tances. As a consequence of this fact, it does not matter thgPnStraints. As we now show, a negative thermal expansivity
we pretend the network possesses long-range translationg) €asily understood and generally to be expected for inter-
order even though it is actually ontyuasi-long-range actions with no hard core. _
Some effects of higher orders in the perturbative expan- N K space, the bare propagai@) is
sion can be fairly easily tested by using a self-consistent
resummed propagator in the diagrams,. as we have done. [Go(k)—l];w:22 ag{ o4 —| el ~HI4", (9)
Generally, the free energy does not lend itself well to resum- e
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FIG. 1. Phase diagram in the T plane. Isobars are indicated by
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elastic moduli

P

FIG. 2. Dimensionless bulk and shear moduli &t 0.30.

dashed lines at-p=0, 0.1, 0.2, 0.5, 0.8, and 1.0. Monte Carlo cyryeq lines(B solid andx dashedl are from the two-loop calcu-
results along these isobaesxcept forp= —0.8) are plotted as data

> ! > . i lation and the data points are Monte Carlo resttisingles foru
points. The points with arrows indicate the highest temperature alnd squares foB). The straight lines are zero-temperature values
which the network was ordered. For the perturbative calculation

fo
the phase boundary is defined by divergence of the compressibility.

r comparison. The shapes are similar for other temperatures.

The shaded region indicates a positive Poisson ratio from the twosame feature of a negative thermal expansion modulus.
loop calculation. It does not actually touch the phase boundary ex- |n contrast to the total area, which is precise#3f2)Ns?

cept atT=0. The inset pictures are to give some impression of theoy definition, bond lengths fluctuate. As a result, although
conformations for expanded and collapsed nets. Their precise placéhe mean bond length decreases with rising temperature, it
ment in the diagram has no significance.

wherell, is a projector onto the line orthogonal #oand
a.=4 sirf(k-e/2)=0. Remember thak is scaled with the
lattice parametes, so it is dimensionless and the entire col-
lection of k vectors is independent f. Eigenvectors of
Gy(k) are completely determined by the sum of projectors in
Eqg. (9), which is a positive operator and independentof
Hence the eigenvectors are also independent ahd the
associated eigenvalues are decreasing witiwe might say
that the mode-specific Gneisen parameters are all negative,
though this usually refers to genuinely fixéd) Thus the
harmonic fluctuation contribution t6 is always decreased
by contracting the lattice. This argument applies to any lat-
tice structure in any dimension, requiring only a nearest-
neighbor harmonic potential.
A more intuitive understanding can be obtained from sim-
ply thinking about the shape of the potentid). The poten-
tial for longitudinal bond fluctuations is harmonic, so a slight
increase ins is no better or worse than a slight decrease. In
contrast, the curvature of the potential that is relevant for
transverse fluctuations is less 1 than fors>1 because
in the former case fluctuations bring the bond length back
toward the minimum of the potential, but further away in the
latter. With minor modifications, this argument seems to go
through for other power-law potentidle.g., 6— 1)*], which

does so more slowly than the area.

A simple energy-entropy argument also gives an indica-
tion of the collapse transition. The key is the observation that
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is nice, since even constructing a perturbation theory for F|G. 3. Dimensionless bulk modultB along isobars at-p
such a case is rather delicate. The partition function of an=0.2 (open squarés0.5 (closed diamonds and 1.0(circles, off-

isolated fluctuating triangle, as opposed to an entire networkset by ther=0 values. Data points are from Monte Carlo results
can be calculated exactf@]. That analysis demonstrates the and the lines are two-loop results.
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TABLE I. Coefficients of the expansion gfandu in powers of

0.20 T and 15, according to Eq(10).
n Pin (1073) Min (1073) P2n (1073) M2n (1073)
R NS
“0\30‘& “II - 3 250 72.17 0 0
0.\\ S A ~x. - 4 146.57 14.93 0 0
02 AN S 5 94.85 1031 31.25 —9.02
¢ \ N 6 64.70 8.49 40.60 —32.85
& Voo PO 7 45.32 5.76 37.99 —55.40
,? 04 ‘\‘ N 8 32.20 3.16 31.70 ~62.94
13 ' o) II 1
06 ' ‘ which is then independent sf The second term becomes an
' additional vertexd, and the scaling holds for this one as
well. In this new scheme, any diagram for the free energy
08 A has a degree irs (denotedS, naturally, given by —S
’ ] =2(L-1)+V=L—-1+33nV,, whereV,, is the number of
vertices of ordem. Thus only a finite number of vertices
10 4 enter at any given order is 1. Furthermore, we obtain the
) 05 10 1.5 inequalities— S/2<L—-1<-S.

’ Writing the zero-temperature parts explicitly, we express

. . — ) the pressure and elastic moduli as
FIG. 4. Dimensionless shear modulusalong isobars at-p

=0.2 (closed diamonds 0.5, and 1.0, offset by zero-temperature
values. Data points are Monte Carlo results and the lines are two- p= —3+3s - 2 Pnms M7,
loop results. nm=1

the collapsed phase seems to develop as chains of collapsed
triangles in an otherwise ordered netwd8. Such a chain

can be visualized as a random walk on the dual lattice. The
walk crosses one bond entering a triangle and another exit- _
ing. These two are collapsed to a length of approximately p=v3(2=3sH+ X ppps M (10
s/2, while the third maintains its length af Then, for each -t
step of the walk there is an elastic energy gal~(s/2
—1)>—(s—1)>=s—3s%4 from shrinking a bond and
pressure-area work of aboutps?/2 from the collapse of a by b, = —mp, ). By settingB=0, the first two terms of
triangle. Finally, each step of the walk entails a choice be'that rggries sugéneét a transition te’mperafD’rev 2 as did
tween two sides of a triangle, so there is an entropy of In Z[he energy-entropy argument of Sec. V. CuriOljst the nu-
per step. These ingredients yield a condensation temperatui. ical coefficients are in close agreement: 2.31 ,and 2.16.
fqr these linear “defects,” identified with the transition and Unfortunately, although the two-loop phase boundary is
given by quite straight, the slope is much smaller, and even smaller
for simulations.

Deep in the ordered phase, the agreement between this
expansion and the full two-loop calculation is very close.
Deterioration of the agreement near the phase boundary leads
Yo a non-negligible difference in its location.

B=v3s 1+ > byns ™",
1

n,m=

Values of the coefficients fan<8 are given in Table (bulk
modulus coefficients are not tabulated since they are given

™ ~[s—(p/2+3/4)s?]/In 2.

For fairly high tension,p— —3, this says that, along the
transition line, temperature essentially scales with area. U
ing the zero-temperature relatisn®= sp/3=1+ p/3, we ar-

rive at the crude estimatd@*~3[2—p]/[(3+p)?2In2].

This agrees with simulation results for the phase boundary to
better than an order of magnitude foxG-p<<2.2.

VIIl. DISCUSSION

Deep in the network’s ordered phase, the agreement be-
tween Monte Carlo and two-loop perturbative results pre-
sented here is satisfying. The poor agreement on the location
of the phase boundary, however, is somewhat disappointing.

The perturbative calculations we have discussed require 8ince the perturbative calculations are essentially an expan-
separate calculation for each area. It is also possible to comsion in T, this divergence at high temperature is not terribly
struct a double expansion ifi and 15, sort of quasivirial  surprising. On the other hand, the considerable discrepancy
expansion. Since this requires just a handful of numbers, it very low temperature(i.e., low tension is puzzling.
gives “more for less,” when applicable. Expansion is18  Vaguely speaking, it may be that the perturbation theory
naturally suggested by the structure of the potenfiaFor  misidentifies some sort of metastable state as the equilibrium
n=3, the vertex?, scales as ("~1). The first term on the phase. Despite this, emphasis is placed by both theory and
right-hand side of Eq(7) is taken as a new bare propagator, simulation on the importance of steric interactions in stabili-

VIl. 1/S EXPANSION
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zation of a low-temperature Hookean spring model of thehe angle between the reflection axis and thaxis. With

cytoskeleton. coordinates oriented so that theaxis is itself a reflection
The self-avoidance interaction we have discussed can b&xis, the free energy is invariant under complex conjugation

expressed as a limit of a term in the Hamiltonian that supof M in Eq. (A2), i.e., underg,— — ¢».

presses negative area. For example, the 8d(—A) of We may now attempt a Landau expansior¢i) about

step functions on the elementary areas\as=, will work. -~ 4—0, at fixeds. Writing ¢=|¢|€e'?, monomials allowed by

In some ways, the network rgspondg S|m|IarIy to |mposmonC6 symmetry are of the formg|2™, | $|2M* Mcos(316), and
of a tension and to a self-avoidance interaction, for examplq, |2+ Msin(3g). Reflection invariance eliminates those
in stabilization of the ordered phase. Perhaps the reason is0 ding. ie the' sine terms

bit easier to see with our remark. An observation in a similar T '
vein[14] is that the self-avoidance for a planar network can
be recovered as the infinite bending-rigidity limit of a net- APPENDIX B: INTERACTION VERTICES

work free to fluctuate in more than two dimensions. . . :
The k-space vertices are obtained by Fourier transforma-
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here the sum runs over nearest-neighbor veatgrsf the
undeformed M = 1) reference lattice. For8n=6, the real-
space interaction vertices are

APPENDIX A: LATTICE SYMMETRY CONSIDERATIONS

6 Y A
Rotations in two dimensions are most easily discussed by LN €)= T2 [slnre) —ererer],
using the complex coordinatgs=x+iy andz=x—iy. We
have 6
X X LM (@)= 3 [ 8 —65rerer) + Belkererer],
My My E

(A1)

e( MZ+MZ  i(MZ-MDH

MY My —i(M2+MH  MZ-M?

for the relation between the deformation matrix in the

andz,z bases. o
As a function of the deformatioM, the free energy ex- —7elrererere?],

hibits both left and right rotational invariances:

F(R(6,)MR(6,))=F(M) for 6, arbitrary, andé, e (7/3) Z. and

Rotation simply changes the phaseszadndz, so, for ex-

1 . P
DL ()= R [35(+r5*ve™ + 105(+ e ere”)

ample,M%—e'("~%)MZ. Fix oneU(1) invariance by re- DENPIT()— 1 [ 8Us 3\ §77) 4 155047 Moo
quiring thatM7 be real(equivalent toMy=Mj). There re- ° 8lef®
mains a symmetry undetj= — 6, =n(=/3), which is theCg — 356 araren) + 218(Hareh arae "],

symmetry of the latticeMZ#0 will indicate that thisCg

symmetry is broken. The notation used in thez body of theparentheses around superscripts indicates symmetrization
paper is related bg=2M; and ¢=¢1+i¢,=M7. In the  (average over permutationande is the unit vector along.

2,z basis, Only ®; and®, are needed to compute the free energy itself
to two loops. The appearance®f and®g is understood on

s ¢ - X
= the basis of the relation
The triangular lattice also has two inequivalent sets of reflec- B, (&)1 tine1 dD(e)H1rHn
tion symmetries, which take the form-e ™2z, whereg is n+i dekn+1
[1] G. Blatteret al, Rev. Mod. Phys66, 1125(1994. man, C. R. Safinya, and G. S. Grest, Scie®66 952 (1993.
[2] G. Griner, Rev. Mod. Phys50, 1129(1988. [5] D. H. Boal, Biophys. J67, 521 (1994).
[3] D. Cule and T. Hwa, Phys. Rev. Lef#t7, 278(1996. [6] Due to entanglement problems during the process of cytoskel-
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temperature state. present referengeAlso, the reported results appear to be re-
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